Self-similar solutions to super-critical gKdV

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions to a coagulation equation

The existence of self-similar solutions with a finite first moment is established for the Oort-Hulst-Safronov coagulation equation when the coagulation kernel is given by a(y, y∗) = yλ + yλ ∗ for some λ ∈ (0, 1). The corresponding self-similar profiles are compactly supported and have a discontinuity at the edge of their support. MSC 2000: 45K05, 45M05, 82C21

متن کامل

Self-Similar Solutions, Critical Behavior and Convergence to Attractor in Gravitational Collapse

General relativity as well as Newtonian gravity admits self-similar solutions due to its scale-invariance. This is a review on these self-similar solutions and their relevance to gravitational collapse. In particular, our attention is mainly paid on the crucial role of self-similar solutions in the critical behavior and attraction in gravitational collapse.

متن کامل

Entire Self-similar Solutions to Lagrangian Mean Curvature Flow

Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with th...

متن کامل

Self-Similar Blowup Solutions to an Aggregation Equation in Rn

We present numerical simulations of radially symmetric finite time blowup for the aggregation equation ut = ∇ · (u∇K ∗ u), where the kernel K(x) = |x|. The dynamics of the blowup exhibits self-similar behavior in which zero mass concentrates at the core at the blowup time. Computations are performed in Rn for n between 2 and 10 using a method based on characteristics. In all cases studied, the ...

متن کامل

Self-Similar Solutions to a Kinetic Model for Grain Growth

We prove the existence of self-similar solutions to the Fradkov model for twodimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbours (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind-discretization of the ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2015

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/28/3/545